

MS2 £2.00

GENERAL CERTIFICATE OF EDUCATION TYSTYSGRIF ADDYSG GYFFREDINOL

# **MARKING SCHEME**

# **BIOLOGY/HUMAN BIOLOGY (NEW)** AS/Advanced

**JANUARY 2009** 

### INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2009 examination in GCE BIOLOGY/HUMAN BIOLOGY. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

# AS MODULE BY1

Answers/Explanatory Notes

Question

|                                                                                                                                                           |                      |                                                                      | •                            | ,                  |                                 |                      |            | Availabl    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------|------------------------------|--------------------|---------------------------------|----------------------|------------|-------------|
| 1. (a) F / calcium or G / pho                                                                                                                             |                      |                                                                      | hosph                        | ate                |                                 |                      |            |             |
|                                                                                                                                                           | (b)                  | l / s                                                                | sucrose                      |                    |                                 |                      |            |             |
|                                                                                                                                                           | (c)                  | A /                                                                  | magnesium                    |                    |                                 |                      |            |             |
|                                                                                                                                                           | (d)                  | ח /                                                                  | cellulose                    |                    |                                 |                      |            |             |
|                                                                                                                                                           | (u)                  | υ,                                                                   | Cellulose                    |                    |                                 |                      |            |             |
|                                                                                                                                                           | (e)                  | G /                                                                  | phosphate                    |                    |                                 |                      |            |             |
| 2                                                                                                                                                         | (f)<br>(mark         | H /<br>first                                                         | water<br>answer)             |                    | [1 mark e                       | ach]                 | [Tot       | tal 6 marks |
| <b>Z</b> .                                                                                                                                                |                      |                                                                      |                              |                    | Types                           | ofbonds              |            |             |
| Leve                                                                                                                                                      | el of prote<br>cture | ein                                                                  | peptide                      | h                  | ivdroaen                        | disulphide           | ionic      |             |
| Prim                                                                                                                                                      | nary                 |                                                                      | /                            |                    |                                 |                      |            |             |
| Sec                                                                                                                                                       | ondary               |                                                                      | /                            | /                  |                                 |                      |            |             |
| Tert                                                                                                                                                      | iary                 |                                                                      | /                            | /                  |                                 | /                    | /          |             |
|                                                                                                                                                           |                      | [1 r                                                                 | 1 mark per row across]       |                    |                                 |                      |            | [3]         |
|                                                                                                                                                           | (b)                  | (i)                                                                  | More than o                  | one po             | lypeptide chain                 | present /            |            |             |
|                                                                                                                                                           |                      |                                                                      | two or more<br>(not: ref. to | e polyp<br>proteir | peptide chains p<br>n/tertiary) | resent.              |            | [1]         |
|                                                                                                                                                           |                      | (ii)                                                                 | haemoglob                    | in / col           | lagen / insulin/a               | ntibodies            |            | [1]         |
|                                                                                                                                                           |                      |                                                                      |                              |                    |                                 |                      | [Total 5 m | narks]      |
| 3.                                                                                                                                                        | (a)                  | βς                                                                   | Jlucose                      |                    |                                 |                      |            | [1]         |
|                                                                                                                                                           | (b)                  | glycosidic                                                           |                              |                    |                                 |                      |            | [1]         |
|                                                                                                                                                           | (c)                  | starch has $\alpha$ glucose molecules cellulose has $\beta$ glucose; |                              |                    |                                 |                      |            |             |
|                                                                                                                                                           |                      | sta                                                                  | rch two polysac              |                    |                                 |                      |            |             |
|                                                                                                                                                           |                      | sta                                                                  | rch has (two po              | lysaccl            | harides) one of v               | which is branched    | whereas    |             |
| cellulose is unbranched;<br>starch has 1-4 and 1-6 linkages, cellulose 1-4 only;<br>amylose / starch coiled, cellulose (cross linked) in straight chains; |                      |                                                                      |                              |                    |                                 |                      |            |             |
|                                                                                                                                                           |                      |                                                                      |                              |                    |                                 |                      |            |             |
|                                                                                                                                                           |                      |                                                                      |                              |                    |                                 |                      |            |             |
| starch consists of single chains cellulose has many parallel chains                                                                                       |                      |                                                                      |                              |                    |                                 |                      |            |             |
| linked with hydrogen bonds.                                                                                                                               |                      |                                                                      |                              |                    |                                 |                      |            |             |
|                                                                                                                                                           |                      | Sta                                                                  | rch, glucose all             | same               | way 'up', rotated               | d (90°) in cellulose | ə.         |             |
|                                                                                                                                                           |                      | (mu                                                                  | ust be a compar              | ison)              | [Any 2]                         |                      |            | [2]         |
|                                                                                                                                                           |                      |                                                                      | •                            |                    |                                 |                      |            |             |

Marks

| Question |     | Answers/Explanatory Notes                   |                           |                                       |  |  |  |  |  |
|----------|-----|---------------------------------------------|---------------------------|---------------------------------------|--|--|--|--|--|
| 3.       | (d) | long chains cross linked by hydrogen bonds; |                           |                                       |  |  |  |  |  |
|          |     | adjacent gluco                              | ose molecules are rotated | l by 180º;                            |  |  |  |  |  |
|          |     | hydrogen bon                                | ds form between hydroxy   | d groups of adjacent parallel chains; |  |  |  |  |  |
|          |     | microfibrils. [2                            |                           |                                       |  |  |  |  |  |
|          |     | (not: fibres/fibrils) [Any 2]               |                           |                                       |  |  |  |  |  |
|          |     |                                             | [Total 6 marks]           |                                       |  |  |  |  |  |
| 4.       | (a) |                                             |                           |                                       |  |  |  |  |  |
|          |     | Structure                                   | Name                      | Function                              |  |  |  |  |  |
|          |     | A                                           | Mitonchondrion            | (Cell) respiration / ATP production   |  |  |  |  |  |
|          |     | В                                           | Chloroplast               | Photosynthesis / light trapping       |  |  |  |  |  |
|          |     | С                                           | Ribosome                  | Protein synthesis                     |  |  |  |  |  |

Independent marks [6] (b) they have been cut in different planes [1] (c) animal cells do not have chloroplast; cell wall; (large) (central) permanent vacuole; centrioles; plasmodesmata (not: chlorophyll) No need for comparative statements. [Any 2] [2] [Total 9 marks] (a) (i) X high Y low Z high (all three correct) [1] (ii) There are folds in the membrane / microvilli (which increases the surface area). [1] (b) (i) С [1] (ii) Moving sodium ions out of the cell will reduce their concentration and create a greater difference in concentration between the inside of the cell and the outside so ensuring a rapid rate of diffusion into the cell. [1]

5.

 (iii) as the temperature is increased kinetic energy/the movement of molecules increases; this results in an increase in rate of diffusion.
(allow: diffuse faster) [2]

PMT

| Question |     | Answe | ers/Explanatory                      | Notes                                           |                                                          | Marks<br>Available |   |
|----------|-----|-------|--------------------------------------|-------------------------------------------------|----------------------------------------------------------|--------------------|---|
| 5.       | (c) | (i)   | P = diffusion                        | Q = facilitated diffusion                       | (must have both)                                         | [1]                |   |
|          |     | (ii)  | facilitated diffus                   | ion causes more rapid                           | movement of                                              |                    |   |
|          |     |       | molecules throu                      | ugh a membrane than s                           | imple diffusion;                                         |                    |   |
|          |     |       | it relies on prote                   |                                                 |                                                          |                    |   |
|          |     |       | and the rate is I i.e. protein carri | ne                                              |                                                          |                    |   |
|          |     |       | therefore the cu                     | urve flattens out; or co                        | nverse                                                   |                    |   |
|          |     |       | Diffusion – no c                     | arriers involved then just                      | st limited by concentratio                               | n                  |   |
|          |     |       | gradient = 2<br>Q flattens out as    | s channel proteins are f                        | ully occupied=2                                          | [2]                |   |
|          | (d) |       | water potential<br>Concentration f   | is the capacity of water ree water molecules in | to leave or enter a syste<br>a solution/ ref. kinetic en | m/cell [1]<br>ergy |   |
|          | (e) | (i)   | K cell wall                          |                                                 |                                                          | [1]                |   |
|          |     |       | J cell/plasma                        | membrane                                        |                                                          | [1                 | ] |
|          |     | (ii)  | cell is plasmoly                     | sed / cell membrane ha                          | s pulled away from the                                   |                    |   |
|          |     |       | cell wall. Allow i                   | incipient plasmolysis, no                       | ot: cytoplasm has shrunk                                 | ۲ [1]              |   |
|          |     | (iii) | cell wall is (fully                  | ) permeable;                                    |                                                          |                    |   |
|          |     |       | sucrose diffused                     | d/moved through to T;                           |                                                          |                    |   |
|          |     |       | there must be the                    | he same (concentration                          | ) solution on                                            |                    |   |
|          |     |       | both sides of the wall;              |                                                 | [2]                                                      |                    |   |
|          |     |       |                                      |                                                 | [То                                                      | tal 15 marks]      |   |

| Question |                             | Answers/Explanatory Notes A |                                                               |                                                                                                                                                                                                                                         |          |  |
|----------|-----------------------------|-----------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| 6.       | (a)                         | (i)                         | A                                                             | competitive                                                                                                                                                                                                                             | [1]      |  |
|          |                             |                             | В                                                             | non competitive                                                                                                                                                                                                                         | [1]      |  |
|          |                             | (ii)                        | А                                                             |                                                                                                                                                                                                                                         | [1]      |  |
|          | (b)                         | (i)                         | 5°C kir                                                       | netic energy is low / few collisions between the (active site)                                                                                                                                                                          |          |  |
|          |                             |                             | of the<br>Allow:<br>70°C th<br>active                         | enzyme and the substrate;<br>ref. to increasing temp and kinetic energy i.e. assume 0 to 5°<br>he hydrogen bonds are broken (as vibrations are strong) /<br>site of the enzyme is denatured/ fewer ES complexes formed due<br>aturation | [1]<br>Э |  |
|          |                             | (ii)                        | A.                                                            | activity of immobilised enzyme is greater between 0°C and                                                                                                                                                                               | [.]      |  |
|          |                             |                             |                                                               | 40°C or at lower temperatures/ rate of reaction greater                                                                                                                                                                                 |          |  |
|          |                             |                             | В.                                                            | optimum temperature of IE covers a wider range / 40°C - 50°C                                                                                                                                                                            |          |  |
|          |                             |                             | C.                                                            | above 40°C the free enzyme begins to denature whereas the IE                                                                                                                                                                            |          |  |
|          |                             |                             |                                                               | starts to denature at 50°C                                                                                                                                                                                                              |          |  |
|          |                             |                             | D.                                                            | IE is more active at all temperatures except 40°C                                                                                                                                                                                       |          |  |
|          |                             |                             | E.                                                            | free enzyme is (completely) denatured at 70°C IE is completely                                                                                                                                                                          |          |  |
|          |                             |                             |                                                               | denatured at 80°C                                                                                                                                                                                                                       |          |  |
|          |                             |                             |                                                               | (any three)                                                                                                                                                                                                                             | [3]      |  |
|          |                             | (iii)                       | The sh                                                        | ape of the enzyme / 3-D structure is maintained or it                                                                                                                                                                                   |          |  |
|          |                             |                             | is stab<br>(not: sl                                           | ilised – molecular movement is 'reduced'<br>hielded/protected enzyme)                                                                                                                                                                   | [1]      |  |
|          |                             | (iv)                        | Detection of blood sugar / testing blood sugar (in diabetics) |                                                                                                                                                                                                                                         |          |  |
|          | (not: diabetics/ biosensor) |                             | iabetics/ biosensor)                                          | [1]                                                                                                                                                                                                                                     |          |  |
|          |                             |                             |                                                               | [Total 10 m                                                                                                                                                                                                                             | arks]    |  |

[1]

[3]

### Question **Answers/Explanatory Notes** Marks Available [1]

- 7. (a) (i) metaphase
  - (ii) [1] centromere
  - (iii) pulls chromatids/chromosomes to opposite poles
  - (b)

| Statement                                                          | Stage in cell cycle             |
|--------------------------------------------------------------------|---------------------------------|
| Chromosomes shorten and thicken and spindle forms                  | Prophase                        |
| A period of intense activity which includes the replication of DNA | interphase                      |
| Formation of two nuclei                                            | Telophase<br>(not: cytokinesis) |

(C)

| Meiosis                           | Mitosis                                            |
|-----------------------------------|----------------------------------------------------|
| 1 two divisions                   | One division                                       |
| 2 four daughter cells             | Two daughter cells                                 |
| 3 number of chromosomes is halved | Number of chromosomes remains the same             |
| Daughter cells genetically        | Daughter cells genetically identical/no            |
| different/variation               | variation                                          |
| Crossing over                     | No crossing over                                   |
| (Homologous chromosomes pair)     | (Homologous chromosomes do not associate in pairs) |

(any three, last 2 points not expected on new spec.) Matched statements required [3]

#### Question **Answers/Explanatory Notes** Marks Available 8. (i) А DNA is a polymer of many nucleotides / nucleotide chains / (a) polynucleotide; [1] В The nucleotide contain the (5-carbon sugar / pentose sugar) deoxyribose; [1] С Attached to which is a base, either thymine, cytosine, adenine or guanine; [1] D The base is either a purine or a pyrimidine; [1] Е T and C are pyrimidines, A and G are purines; [1] F The nucleotides are linked in a chain by alternate phosphate / sugar links/sugar phosphate backbone; [1] G One nucleotide can join to another by a condensation reaction; [1] Н DNA consists of two of these chains twisted helically / double helix [1] L (Diagram showing) strands linked through correct A-T, G-C base pairings; [1] J Complimentary bases linked by hydrogen bonds. [1] (Any 7 from A-J) (ii) Κ DNA contains deoxyribose sugar and RNA contains ribose; [1] L DNA contains thymine (base) and RNA contains uracil; [1] Μ DNA the bases are paired, in RNA they are unpaired; [1] Ν DNA is a double helix/stranded and RNA is single stranded; [1] 0 DNA is longer than RNA; [1]

(Any 3 comparative points from K-O)

## [Total 10 marks]

| Question Answ |     | Ansv | wers/Explanatory Notes                                                                                                                                                                                                                                                |                   |  |
|---------------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| 8.            | (b) | A    | water is a polar molecule / dipolar / allows chemical reactions to to take place in solution;                                                                                                                                                                         | [1]               |  |
|               |     | В    | explanation of dipolar H +ve, O –ve (allows diagram);                                                                                                                                                                                                                 | [1]               |  |
|               |     | С    | explanation of hydrogen bonding;                                                                                                                                                                                                                                      | [1]               |  |
|               |     | D    | water is an universal solvent / dissolves polar and ionic substances or examples ( <b>not:</b> many substances dissolve in water);                                                                                                                                    | [1]               |  |
|               |     | Е    | since chemicals <u>dissolve</u> in water it acts as a transport medium in blood or phloem / xylem;                                                                                                                                                                    | [1]               |  |
|               |     | F    | water molecules show cohesion qual. / tall columns of<br>water can be drawn up xylem vessels in tall trees /<br>reference to cohesion tension theory and transpiration/ surface<br>importance to living organisms e.g. walk on surface                                | e tension-<br>[1] |  |
|               |     | G    | gases such as $O_2$ and $CO_2$ dissolve in water, available for respiration / photosynthesis;                                                                                                                                                                         | [1]               |  |
|               |     | н    | high latent heat of vaporisation;                                                                                                                                                                                                                                     | [1]               |  |
|               |     | I    | explanation of importance, cooling body when sweating;                                                                                                                                                                                                                |                   |  |
|               |     | J    | water has a high specific heat / large amount of heat energy is needed to raise the temperature of water / high thermal capacity;                                                                                                                                     | [1]               |  |
|               |     | К    | explanation – heats up slowly and cools down slowly;                                                                                                                                                                                                                  | [1]               |  |
|               |     | L    | importance of this ability to maintain constant temperature /<br>this prevents large fluctuations in the temperature of water /<br>important in keeping the temperature of aquatic habitats stable /<br>that organisms do not have to endure extremes of temperature; | [1]               |  |
|               |     | Μ    | water is transparent allowing light to pass through enabling aquatic plants to photosynthesise effectively;                                                                                                                                                           | [1]               |  |
|               |     | 0    | Water in its solid form (ice) is less dense than water and so floats on the surface;                                                                                                                                                                                  | [1]               |  |
|               |     | Ρ    | Ice forms an insulating layer and allows organisms to survive benea                                                                                                                                                                                                   | ath               |  |
|               |     |      | it / preventing further heat loss / hibernation in ponds                                                                                                                                                                                                              | [1]               |  |
|               |     | Q    | Water is a reactant in photosynthesis / hydrolysis                                                                                                                                                                                                                    |                   |  |
|               |     |      | [Total 10 ma                                                                                                                                                                                                                                                          | rks]              |  |

GCE Biology/Human Biology (New) Marking Scheme (January 2009)/ED 23 February 2009





WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk/exams.html</u>